- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0000000005000000
- More
- Availability
-
23
- Author / Contributor
- Filter by Author / Creator
-
-
Menon, Karthik (5)
-
Marsden, Alison L (4)
-
Schiavazzi, Daniele E (3)
-
Geraci, Gianluca (2)
-
Pfaller, Martin R (2)
-
Richter, Jakob (2)
-
Zanoni, Andrea (2)
-
Biehler, Jonas (1)
-
Dorn, Nicholas C (1)
-
Harold, Kaitlin E (1)
-
Khan, M Owais (1)
-
Kumar, Sushrut (1)
-
Mathew, Emilin M (1)
-
Mittal, Rajat (1)
-
Nieman, Koen (1)
-
Nitzler, Jonas (1)
-
Pegolotti, Luca (1)
-
Pham, Jonathan (1)
-
Salvador, Matteo (1)
-
Verma, Aekaansh (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 1, 2026
-
Menon, Karthik; Richter, Jakob; Pfaller, Martin R; Pham, Jonathan; Mathew, Emilin M; Harold, Kaitlin E; Dorn, Nicholas C; Verma, Aekaansh; Marsden, Alison L (, Journal of Open Source Software)Free, publicly-accessible full text available May 1, 2026
-
Richter, Jakob; Nitzler, Jonas; Pegolotti, Luca; Menon, Karthik; Biehler, Jonas; Wall, Wolfgang A; Schiavazzi, Daniele E; Marsden, Alison L; Pfaller, Martin R (, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences)Bayesian boundary condition (BC) calibration approaches from clinical measurements have successfully quantified inherent uncertainties in cardiovascular fluid dynamics simulations. However, estimating the posterior distribution for all BC parameters in three-dimensional (3D) simulations has been unattainable due to infeasible computational demand. We propose an efficient method to identify Windkessel parameter posteriors: We only evaluate the 3D model once for an initial choice of BCs and use the result to create a highly accurate zero-dimensional (0D) surrogate. We then perform Sequential Monte Carlo (SMC) using the optimized 0D model to derive the high-dimensional Windkessel BC posterior distribution. Optimizing 0D models to match 3D dataa priorilowered their median approximation error by nearly one order of magnitude in 72 publicly available vascular models. The optimized 0D models generalized well to a wide range of BCs. Using SMC, we evaluated the high-dimensional Windkessel parameter posterior for different measured signal-to-noise ratios in a vascular model, which we validated against a 3D posterior. The minimal computational demand of our method using a single 3D simulation, combined with the open-source nature of all software and data used in this work, will increase access and efficiency of Bayesian Windkessel calibration in cardiovascular fluid dynamics simulations. This article is part of the theme issue ‘Uncertainty quantification for healthcare and biological systems (Part 1)’.more » « lessFree, publicly-accessible full text available March 13, 2026
-
Zanoni, Andrea; Geraci, Gianluca; Salvador, Matteo; Menon, Karthik; Marsden, Alison L; Schiavazzi, Daniele E (, Computer Methods in Applied Mechanics and Engineering)
-
Menon, Karthik; Kumar, Sushrut; Mittal, Rajat (, Physical Review Fluids)
An official website of the United States government
